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CHEMOMETRIC METHODS FOR THE STUDY OF 
TOXIC METALS ON THE GROWTH OF PLANTS: 

USE OF EXPERIMENTAL DESIGN AND 
RESPONSE SURFACE METHODOLOGY 

MAHMOUD A. ALLUS and RICHARD G. BRERETON* 

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 ITS, UK 

Chemometrics is a recent discipline concerned, principally, with the application of mathematics and 
statistics to laboratory systems. One way in which the chemometrician can aid the environmental 
analytical chemist is via planned experimental designs. In this paper the importance of experimental 
design is illustrated and the main considerations prior to experimentation, namely, degrees of freedom, 
analytical errors, coding and modelling, are outlined. This is exemplified by a study of the influence of 
potentially toxic heavy metals on the growth of barley seedlings. Undesigned univariate experiments 
suggest that TI is probably more toxic than Cd. A three factor central composite design is reported, to 
study the relative toxicities of TI, Cd and Pb and also of TI, Fe and Zn. The paper exemplifies how 
much information can be obtained from the resultant experimental response data. Multilinear 
regression can be employed to produce a quadratic model: this can be interpreted graphically by 
reconstructed univariate response curves and 3-dimensional response surfaces. Analysis of variance is a 
statistical method for computing how well the model has been fitted, taking into account analytical 
errors. With the aid of modern graphical computing, a variety of confidence intervals can be displayed 
for both univariate and bivariate responses. The usefulness of the design can be visualised by displaying 
leverage over and outside the experimental region. Finally future trends in multivariate response 
methodology are discussed. 

1. INTRODUCTION 

Heavy metals are important environmental pollutants,'*2 often byproducts of 
industrial processes. Concentrations of these metals can be monitored by studying 
plant and animal tissues, and samples of water, sediments and soil. The influence 
of these metals on plant and animal growth can be observed in the field. However, 
many investigators also employ laboratory experiments. Clearly it is important to 
relate the results of these experiments to field studies. In order to do this, carefully 

*Author to whom correspondence should be directed. 
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280 M. A. ALLUS AND R. G. BRERETON 

designed experiments are required. It is possible to obtain large quantities of 
laboratory data which cannot properly be related to field studies. Unless the 
experimental procedures are carefully planned in advance it is often hard to 
quantitate how valid the laboratory based results are. 

In this paper we demonstrate the importance of experimental design in 
analytical environmental chemistry, illustrated by the influence of heavy metals on 
the dry weight of barley seedlings after 4 weeks’ growth. 

Chemometrics is a well established discipline. The interested reader is referred to 
established  textbook^,^^^ reviews,’-’* series of rnonograph~,’~ and 
conference proceedings.’”’6 

Analytical environmental chemistry is particularly suited to the chemometric 
approach since it is possible to obtain a large number of measurements from both 
natural and laboratory systems. However, because these processes are often 
influenced by several factors, many of which are hard to quantify, exact relation- 
ships (often possible to predict and establish in pure physical sciences) are not 
expected: instead multivariate statistical approaches are required to disentangle the 
various influences on these systems. 

2. IMPORTANCE OF EXPERIMENTAL DESIGN 

2.1 Degrees of Freedom 

Environmental chemists are frequently interested in how a response (e.g. the dry 
weight of a plant) is influenced by afactor (e.g. the concentration of TI). 

Many experiments are involved in observing and computing response curues. 
The interpretation of these curves depends on modelling the process: below we 
discuss the importance of choosing correct models in more detail, but at present 
we assume a model is a proposed equation that describes experimental data: much 
of the aim of experimentation is to discover how well such an equation actually 
does describe the observed trends. How well the process can be modelled depends 
on how the experimental sampling strategy is designed. 

Consider the simple example of determining whether a linear relationship 
between a response (y) and a factor (x) exists. If only two responses are measured 
then the data will always exactly fit a straight line relationship, with a correlation 
coefficient of k 1: thus this particular experiment is poorly designed as there is no 
information as to whether x and y are linearly related (Figure la). It is possible to 
envisage more complex systems in which, in practice, there is no information 
about whether a response obeys a particular model, but standard statistical 
indicators such as correlation coefficients, if misinterpreted, can be cited, out of 
context, as evidence for relationships between variables. 

In the above experiment we say that there are no degrees offreedom to assess 
the validity of the model. A better experiment might be to observe three responses 
(Figure lb). In such case there is some information as to whether the two 
parameters are linearly related: there is one degree of freedom. Obviously if more 
experiments are performed, there will, consequently, be increasingly more degrees 
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Figure la Example of a perfect apparent linear fit to 2 datapoints, with correlation coefficient of f 1. 
This experiment tells us nothing about whether the data actually obeys a linear model or not. 
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Figure I b  Example of a better designed experiment, consisting of three samples. There is now some 
information as to whether the data obeys a linear model, although the correlation coefficients must be 
treated with caution. 
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of freedom so the experimenter can be more confident in his model. If, however, 
the experimenter wants to change the model to a more sophisticated one, then 
even more observations are required. The experiment in Figure l b  will give a 
perfect fit to a quadratic model, so there will be no degrees of freedom to assess 
how well the experimental data obey the model. 

In general the number of degrees of freedom to assess the fit to a model is given 
by 

where v is the degrees of freedom, N is the number of non-replicated observations 
(see below for a discussion of replicates) and P is the number of parameters in the 
model. Thus if, as illustrated in Figure lb, there are 3 non-replicated sampling 
points and a linear model of the form 

y =  bo+ b l x  

(i.e. a 2 parameter model), v = 3 - 2 = 1. 
Correlation coefficients must always be interpreted taking the number of degrees 

of freedom into account. If there are very few degrees of freedom, then high 
apparent correlations often lack significance. 

2.2 Analytical Error and Replicates Analysis 

Obviously the more experiments performed, the greater the number of degrees of 
freedom and so more information is available about the model. When do we stop 
experimenting? 

A great deal depends on the accuracy and reproducibility of the analytical 
measurement process. Consider a highly reproducible analytical procedure. As 
illustrated in Figure lc, it is relatively easy to assess whether y is linearly related to 
x using only 3 points. If, however, the measurement process is less reproducible 
then even if y and x are linearly related, because of the analytical error, it is hard 
to obtain this information from only 3 experiments: this is illustrated in Figure Id. 

Thus a good experiment provides information about the analytical error as well 
as the model itself. This is normally performed via replicates analysis, i.e. repeating 
certain sampling points. Naturally the more replicates, the greater the degrees of 
freedom and so the more the information available about the analytical process. 
Often in the rush to obtain as many measurements as possible, investigators do 
not have the patience to obtain replicates information, or else average replicated 
measurements. In environmental applications, where measurement processes are 
not always highly reproducible, some information about analytical errors is 
essential prior to analysis of quantitative data. 

In statistical terms the variance of the least squares fit to the model and the least 
squares estimate of each parameter is compared to that of the experimental error. 
This approach is called A N O V A  (analysis of variance). There are a large number 
of statistical and chemometric texts on experimental d e ~ i g n , ” - ~ ~  many of which 
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Figure lc Influence of high analytical reproducibility on model pictured in Figure Ib. Because 
reproducibility is high, almost any non-replicated sampling scheme will yield the same results. 
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Figure Id Influence of low analytical reproducibility on model pictured in Figure lb. In this case, 
there is high variability in the data, so 3 sampling points may not give a good picture of the model so 
apparently low correlation coefficients may be the result of the analytical process rather than a poor fit 
to the actual model. 
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are based around designing experiments to provide sufficient information to 
perform ANOVA on the resultant response. 

As we will discuss in greater detail below, it is possible to visualise how well 
experimental data are described by a model by computing confidence intervals. 
The broader the confidence bands the less useful the experiment. It is only possible 
to compute these bands if there are sufficient degrees of freedom, so we cannot 
compute confidence intervals for the data in Figure l a  as there is no information 
as to how well the model is fitted. We can, however, compute confidence intervals 
for the data in Figures l b  to Id: in Figures le to lg  we display the 95% 
confidence intervals for the fit of a linear model to the raw data. The effect of 
replication is to reduce the confidence intervals, and so produce a more certain 
answer. Without replication the confidence bands are extremely wide, suggesting 
that there is little evidence for either the absence or presence of linearity despite a 
high correlation between the two variables. In Figure If the analytical error is 
quite small so the confidence bands are very tight. As the analytical error increases 
(Figure lg) the confidence bands are broader and almost as wide as in Figure le. 
This demonstrates the importance of measuring analytical error via replicates 
analysis as well as the need to properly design experiments allowing sufficient 
degees of freedom to assess how well the model is fit. 

2.3 Coding 

Another frequently overlooked, but crucially important, aspect of experimental 
design involves converting the raw response to a form that can be analysed 
directly by standard statistical approaches. 

Environmentalists might want to determine whether acidity is linked to the 
presence of a pollutant. How should acidity be measured? Should it be expressed 
in the form [H’] or as pH? The latter scale is logarithmically related to the first 
scale. The answer is that we choose whichever method of scaling or coding 
according to what is most convenient for subsequent dataprocessing. Negative 
values of logarithms are physically meaningful, whereas negative values of 
measurements such as concentrations or plant root lengths do  not have a physical 
meaning. Also many natural processes can be modelled by exponential decays or 
asymptotic behaviour: it is hard to fit exponential models, but when converted to 
a logarithmic scale these models reduce to linear models which are relatively easy 
to fit by standard regression techniques. So, very frequently, the factor variable is 
logarithmically coded. 

In addition to taking logarithms it is often important to establish the region 
over which an environmentally significant response is expected. For example, there 
is no point studying the response of TI in molar concentrations, as plants are 
almost certain to be dead at these concentrations, and the physiological processes 
that are studied at low concentrations often break down. In many types of 
experiment, a concentration or factor at the “centre” of the experiment is 
established: this concentration is then coded to correspond to a value 0; lowest 
and highest “interesting” concentrations are also established, normally equidistant 
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Figure l e  9504 confidence bands for data in Figure Ib. 
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Figure If 95% confidence bands for data in Figure Ic. 
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Figure lg  95% confidence bands for data in Figure Id. 

(in coded scale) from the centre point. These are normally set to correspond to 
points at f 1 in the design. Obviously the choice of the method of coding requires 
some intuitive estimates of the process being studied. 

As well as coding the “factors” it is often useful to scale the response. 

2.4 Models 

Another critical consideration of any experiment is how to model the process 
being studied. It is important to establish what model is to be tested, prior to 
performing the experiments. Above we considered a simple linear model: is y 
linearly related to x? In order to have any information to answer this question, at 
least 3 non-replicated experiments are required. This is because the model is a 2 
parameter model. 

In more complex situations it is usual to employ multilinear models. For a single 
factor experiment 

y ’= bo+ b1x’+ b l , Y 2  + b 1 1 , ~ ’ 3  + 1 . .  ( 3) 

where y’ is the coded response and x’ is the coded factor. Clearly for an nth order 
model at least n+ 1 measurements are required. 

However, in most situations we employ multifactor experiments. In such cases 
the influence of several factors on an observed response is of interest. These types 
of experiments are closer to reality. For example, we might grow plants in the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
3
4
 
1
8
 
J
a
n
u
a
r
y
 
2
0
1
1



CHEMOMETRIC METHODS FOR STUDY OF TOXIC METALS 287 

presence of varying concentrations of 3 different metals. Extending the quadratic 
form of Eq. (3) to a multifactor response we have 

i = 3  i = 3  i = ,  j = 3  

(4) 
i =  1 i =  1 i =  1 j =  1 

where xi is the coded value of factor i. As well as the normal linear and quadratic 
terms, cross product terms of the form bij are introduced to the model. These 
interaction terms can play a crucial role in relating the laboratory experiments to 
reality. Single factor (univariate) experiments cannot provide such information 
and often lead to completely misleading conclusions. Responses are rarely additive 
or independent. For example if the dry weight of a plant in the presence of 
x1 pg/gTl is y, g, and in the presence of x2 pg/g Cd is y, g, is the dry weight in 
the presence of x,pg/gTl and x,pg/gCd y,+y,g? This is unlikely, so it is 
important to discover how different factors “cancel” each other out. The lack of 
information about interactions often causes serious misunderstandings about 
interpretation of laboratory based studies in the field. For example, consider a 
laboratory based experiment that is used to conclude that the abundance of a 
given series of chemicals in algal cells changes with temperature. Can these results 
be used as indicators of temperature in the field? Other factors are also likely to 
influence the abundance of these chemicals such as light intensity and wavelength, 
salt concentration, phase in lifecycle etc. Unless information about the magnitude 
of interactions is obtained, laboratory based experiments may be irrelevant when 
used to predict field behaviour. 

The interactions and the form of the univariate response curves are predicted by 
the model. The model, in turn, determines the minimum size of experiment. For 
example, a 3 factor experiment with quadratic models in the form of Eq. (4), 
requires 10 parameters. Therefore, there must be at least 11 non-replicated points 
in the design, preferably a few more in order to provide a few degrees of freedom 
to assess the goodness of fit to the model. 

Naturally if cubic and other higher order terms are suspected in order to 
provide a better fit to the model, more experiments will be required. So the nature 
of the questions to be asked and the model must be determined prior to 
experimentation. 

y’= bo + c bixf + biixi2 + 1 c bijxix; 

3. AN EXPERIMENT: THE INFLUENCE OF HEAVY METALS ON THE 
GROWTH O F  PLANTS 

3.1 The Conventional Approach 

The conventional approach to studying the influence of heavy metals on the 
growth of plants is to grow plants in varying concentrations of each metal and 
monitor some parameter such as the dry weight, wet weight, root length, shoot 
length and so on. 

Figure 2 is a graph of the dry weight of barley seedlings after 4 weeks’ growth in 
varying concentrations of T1 and Cd. This experiment suggests that plant growth 
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T1 AND Cd CONCENTRATIONS 

Figure 2 Rel:h.tive univariate response curves for adding TI and Cd separately in pg/cm3, scaled so 
that the dry weight at 0 concentration of each metal is 1.0 (the points at higher concentrations for a 
given met.d arc relative to the yield at 0 concentration, and each set of growth experiments for a given 
metal wa‘ ,wImned simultaneously). AT1 and + Cd: 

is supprw-cl at high concentrations of both TI and Cd, so both metals are toxic. 
It also cupgests that TI is more toxic than Cd. Elsewhere we report similar 
conclusions for the root and shoot lengths.” However, very little further 
informaf ion can be gained from these experiments. There is no information about 
the interaction effect (i.e. what happens when both T1 and Cd are in high 
concentrations). There is no information as to how well, quantitatively, the model 
is obeyed or as to how certain and reproducible our conclusions are. There is no 
informalion about the experimental error, therefore the lack of fit cannot be tested. 

3.2 Three Factor Central Composite Design 

In order to improve the experiment, we employ experimental design methodology. 
Full details of growth conditions, coding and the theory of the design, and the 
computational methods have been reported by us elsewhere,22-26 so we limit this 
discussion to essential information. 

A central composite design is chosen. Three factors, corresponding to 3 metals 
are chosen: for Experiment A these factors are TI, Cd and Pb and for Experiment 
B, these are T1, Fe and Zn; hence Experiment A is used to look at the relative 
toxicities of TI, Cd and Pb and their interactions. 
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Table 1 Coded concentrations for each experiment 

Experiment A T1 Cd Pb 

C l O  0.00 1 0.00 1 0.001 
CO 0.10 0.10 0.10 
chi 10.00 10.00 10.00 

Experiment B TI Fe Z n  
~~ 

C l O  0.00 1 0.0025 0.005 
CO 0.10 0.25 0.5 
chi 10.00 25.00 50.00 

The metal concentrations are coded as follows. If xi is the coded concentration 
corresponding to the actual concentration x i ,  then 

where 

The values of xilo and Xihi are chosen so that they are at the low and high 
concentration ranges of interest in the experiment. xio  is the geometric mean of 
these two parameters. From the above analysis it can be shown that the coded 
value of x i lo  is - 1.68, that of xi,, is 0 and that of Xihi is + 1.68. The investigator 
chooses the values of xilo and xihi according to reasonable observations, so that the 
experimental region is one of high variability and interest. The values employed in 
this study are given in Table 1. It is important to note that these values differ 
according to metal. This is because some metals are expected to be more toxic 
than others: the least toxic metals will show significant effects at higher 
concentrations. 

Once the factors are coded, standard experimental designs are employed which 
tell the experimenter which combination of factors should be used in the growth 
(or similar) experiments. For the three factor, central composite, design, the 
combination of factors given in Table 2a are employed. These can then be 
interpreted in terms of experimental conditions; for example, condition 8 involves 
setting x,, x2, and x3 at +1:  for Experiment A this involves growing barley 
seedlings in 1.55pg/cm3 of added T1, Cd and Pb. 

Several features of the design should be noted. First, heaviest experimentation is 
in the middle. Second, there are 5 replicates in the centre (coded O,O,O)  which are 
used to assess analytical errors. Third, there are 15 non-replicated experiments, 
allowing 14 degrees of freedom to assess goodness-of-fit to the model. If a 
quadratic model of the form of Eq. (4) is employed, there are 10 terms to estimate, 
so there are sufficient degrees of freedom to assess such a model. It would not be 
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Table 21 Design used in the experiment 
~~ 

Condition x, x2 x3 

1 - 1  - 1  - 1  
2 - 1  - 1  1 
3 - 1  1 - 1  
4 - 1  1 1 
5 1 - 1  - 1  
6 1 - 1  1 
7 1 1 - 1  
8 1 1 1 
9 1.68 0 0 

10 - 1.68 0 0 
11 0 1.68 0 
12 0 - 1.68 0 
13 0 0 1.68 
14 0 0 - 1.68 
15 0 0 0 
16 0 0 0 
17 0 0 0 
18 0 0 0 
19 0 0 0 
20 0 0 0 

Now The values correspond to coded concentrations of the 
l h m  metals as indicated in Table 1. 

possible to tit a complete cubic model which would require 10 extra terms, 
although it is possible to test for individual cubic terms if required. 

The experiment can also be represented by a cube (Figure 3). Each experiment 
is represented by a point on this cube. 

It must be emphasized that there are a huge number of possible experimental 
designs, and we do not discuss the merits of choice of design in this paper. The 
interested reader should, however, carefully consider the nature of the experiment 
and model building prior to choosing a design. 

3.3 Result of Experimentation 

The results of experimentation is a measured response for each of the growth 
conditions given in Table 2b. The 20 dry weights (or yields in g) for experiments A 
and B are listed in Table 3. These can be interpreted in a variety of ways and help 
us answer several questions about the natural processes. 

4. INTERPRETATION OF THE EXPERIMENT 

4.1 Regression and Curve Fitting 

The first step is normally to perform multilinear regression analysis on the 
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Figure 3 Cubic representation of the experimental layout (Table 2). Each point corresponds to one or 
more condition in the experimental design. The axes correspond to coded metal concentrations (x,.x2 
and xj) as discussed above. 

data.22v23 In our experiments 10 coefficients can be obtained from each experiment 
A and B, corresponding to the 10 parameters. There are a variety of ways of 
scaling the responses: in this study we take the logarithm (to the base 10) of the 
dry weight: it is, of course, possible to fit similar models to linear responses. The 
resultant parameters are tabulated in Table 4; remember that the factors ( x i )  are 
also scaled and that they are not all on the same scale (see Table 1). This will be 
discussed in greater detail below, but is best performed by graphical 
representations. 

However, these parameters are probably best interpreted graphically. The 
parameters bi and bii can be used to reconstruct univariate response curves, similar 
in concept to those of Figure la, but using reconstructed rather than directly 
observed data. The univariate response curves are illustrated in Figure 4: these 
curves are reconstructed from the regression model using x j .  and x k ,  equal to zero, 
i.e. the response curve for TI (Expt. A) is reconstructed setting the coded 
concentration of Cd and Pb at zero: it is important to realise that the coded 0 is 
not the same as the absence of the other two metals. Note that the concentrations 
are converted back to a linear scale; this means that the toxicity curves are now 
on the same absolute scale and the distortion of coding on the estimated 
coefficients (which is for experimental convenience) is now eliminated. It is, of 
course, possible to set the concentrations of the other metals at any value, and 
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Table 2b Asymmetric design as used in 
Figure 8 

Condition x ,  x2 x3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

-3 0 0 
-3 0 0 
-2 0 0 
-2 0 0 
-1 -1  - 1  
- 1  -1 1 
- t  1 - 1  
- 1  1 1 

0 0 -2 
0 0 0 
0 0 0 
0 0 2 
0 2 0 
0 3 0 
1 - 1  -1 
1 - 1  1 
1 1 -1  
1 1 1 
2 0 0 
2 0 0 

Table 3 Plant dry weight (g) after 4 weeks’ 
growth 

Condition 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Experiment A 

0.93 
0.80 
0.61 
0.61 
0.28 
0.24 
0.25 
0.18 
0.21 
0.88 
0.31 
0.83 
0.67 
0.88 
0.85 
0.78 
0.78 
0.81 
0.75 
0.70 

Experiment B 

1.61 
0.79 
0.95 
1.31 
0.2 1 
0.19 
0.29 
0.20 
0.17 
1.67 
1.33 
1.05 
0.49 
1.36 
1.24 
1.17 
1.29 
1.15 
1.29 
0.95 
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Table 4 Least square parameter estimates 

Parameter Experiment A Experiment B 

bo - 0.243 0.177 
bl -0.510 -0.761 
bl1 -0.265 -0.377 
b2 - 0.203 -0.056 
b,, -0.21 1 -0.096 
b3 - 0.077 -0.187 
b,, - 0.062 -0.227 
b l 2  0.039 0.052 

b2, - 0.002 0.094 
bt3 - 0.037 -0.010 

‘Each metal concentration is scaled according to Table 1. 
bMetals for Experiment A are I-’11. 2-Cd. 3-Pb and lor Experiment 

‘Dry weight is logarithmically scaled as discusscd in the text. 
B are I-TI. 2-Fe. 3-211. 

0 2 4 6 8 10 

ME T A L  C O N C E N T R A T I O N  

Figure 4 Reconstructed univariate response curves for Experiment A and B using relative yield (linear 
scale) and converting metal concentrations to p g / c m 3 ,  from right hand top to bottom, Fe, Pb, Zn, Cd, 
TI (Experiment A), TI (Experiment B). 

these univariate response curves should be regarded as a 2-dimensional projection 
of the 4 dimensional hyperspace in which the estimated response in the presence of 
varying concentrations of all 3 metals is displayed. The T1 response curves for 
both experiments are very similar, giving us confidence in the process; Cd is clearly 
less toxic than TI. Zn and Pb have fairly similar toxicities and Fe is the least toxic. 

Comparing Figure 2 and Figure 4 we clearly see that using our experimental 
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design smoother curves are obtained. Also only 40 points were needed to produce 
the data in Figure 4, compared to 23 points for Figure 2. Yet Figure 2 only 
provides information on the influence of two different metals on the observed 
response, and there is no quantitative information about confidence intervals, 
degrees of freedom and so on. There is absolutely no information about 
interaction effects. This demonstrates the increased efficiency of the design. 

Another way of illustrating relative toxicities is by plotting response suflaces. 
Figure 5 is the response surfaces for T1 and Cd, at a coded value of Pb of 0. These 
3 dimensional reconstructions are the estimated response for any combination of 
metal concentrations. There will be 3 response surfaces for any 3 combinations of 
metals. The surface pictured in Figures 4 and 5 shows clearly the greater toxicity 
of T1 as opposed to Cd: the “downward” slope is much greater along the x1 axis 
as opposed to the x2 axis, further reinforcing the evidence from the univariate 
response curves: in fact these reconstructions are very sensitive indicators of 
relative toxicities.” As with the univariate response curves, these surfaces are 
merely projections from 4 dimensional hyperspace, and the shape of the surfaces 
will appear different according to the value of the third metal chosen. Normally a 
coded value of 0 is used, as in this study. 

Another point to note is the size of the interaction effects given by the terms 
bij. The only terms that are large relative to the univariate terms are those for TI 
and Cd: this might suggest that these two metals compete for similar sites in the 
cell, and so are not entirely additive. 

4.2 How Well have the Parameters been Predicted? 

One advantage of designed experiments is that there is information as to how well 
the parameters have been predicted. 

The conventional approach is uia ANOVA (Analysis of Variance). Errors in 
predicted models are normally estimated using least squares criteria: for example 
the greater the size of the residuals least square errors, the poorer the fit to the 
model. It is normal to compare this error to the overall analytical (replicate) error. 
The ratio of these variances is then computed. A statistic such as the F-test is then 
used to indicate what percentage confidence there is in each parameter or 

’4 this test assumes that errors are normally distributed. Usually 95 % 
significance is indicated by *, 99% by ** and 99.9% by ***. The results are 
usually presented in tabular form, as in Table 5. The mean least squares estimates 
of all 10 parameters and of the overall model are tested against the overall mean 
analytical (replicate) error. 

We discuss ANOVA in detail e l ~ e w h e r e , ~ ~ * ’ ~  but it is important to recognise 
that chemometricians often have to interpret ANOVA results with some caution. 
In Table 5 we see that many of the parameters are highly significant relative of the 
analytical (replicate) error (that is we are highly confident that these results are 
correct within the limits imposed upon the model by the analytical errors) but also 
that there is a significant lack-of-fit. In chemometrics applications experiments are 
often far more reproducible than in, for example, biology, geology or psychology. 
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21 

1.00 - 

-0 .75 

-2. 50 1. 68 
1. 

-1.68 

_ _  
Figure 5s Response surface for TI (xl) and Cd (x2) (Experiment A) using coded metal concentrations 
and logarithmic response (dry weight). 

1.68 
0 
D 
E 
D 

C 
d 

C 

N 
C 
E 
N 
T 

A 
f 
I 
0 
N -1.68 

0. 84 

O 0.00 

R -0.84 

-1.68 -0.84 0. 00 0. 8 4  1. 68 

CODED T 1  CONCENTRATION 

Figure Sb Contour representation of Figure 2. Levels from centre are -0.1, -0.5, -0.9, - 1.3, - 1.7, 
-2.1 and -2.5. 
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Table 5 Analysis of variance for log of dry weight (Experiment A) 

Source Sum of d.f Mean Mean square 
squares square ratio 

X I  

x2 
x3 

XI*XI 

XI*XZ 
.%*XI 

x3*x3 

1 *x3 

x2*x3 

Total reg. 
Lack-of-fit 
Treatments 
Anal. error 
Total 

3.53 
0.56 
0.08 1 
0.85 
0.012 
0.62 
0.01 1 
0 
0.056 

5.716 
0.405 
6.121 
0.0227 
6.1431 

1 
1 
1 
1 
1 
1 
1 
1 
1 

9 
5 

14 
5 

19 

3.53 
0.56 
0.08 1 
0.85 
0.012 
0.62 
0.01 1 
0 
0.056 

0.635 
0.08 1 
0.437 
0.00454 

778.1 ** * 
124.2*** 
17.8* 

186.4*** 
2.68 

134.5*** 
2.45 
0 

12.2* 

17.8** 

Analysis of variance for log of dry weight (Experiment B) 

Source Sumof d.f Mean Mean square 
squares square ratio 

X I  7.9 1 1 7.9 1 578.7*** 
x2 0.043 1 0.043 3.12 
x3 0.48 1 0.48 35.1.. 
X I * X I  1.78 I 1.78 1129.9*** 
XI*% 0.02 1 1 0.02 1 1.56 
XZ*XZ 0.079 1 0.079 5.81* 
X l * X 3  0 1 0 0 
x2*x3  0.07 1 1 0.07 1 5.53* 
X3*X3 0.74 1 0.74 S4.2*** 
Total reg. 11.121 9 1.236 
Lack-of-fit 1.102 5 0.22 1 16.1** 
Treatments 12.223 14 0.873 
Anal. error 0.0683 5 0.0137 
Total 12.2916 19 
Noles 'Significance levels are '95%, '*W% and ***W.9%. 

bFor detailed interpretation SCC standard texts and referenas in papr .  
'd.l =degrees of Irccdorn. 

For example a biometrician might wish to study the reflexes of individuals of 
different ages: there will clearly be much less reproducibility among individuals. 
Although, in our case, the plants, themselves may be subject to variability, the 
analytical process (e.g. measuring a root length) is fairly reproducible and the 
concentration of chemicals metals can be determined with a high degree of 
accuracy. Thus analytical errors are often relatively small; normal ANOVA 
methods compare the experimental errors to the analytical error: clearly if this 
latter error is small the entire analysis is influenced. However, provided output 
from computers is treated with some caution ANOVA can be a valuable tool. 
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Complementary to numerical analysis is the possibility of graphical represen- 
tation of confidence  interval^.^' It is usual to compute 95 % confidence intervals. 
There are various criteria for confidence limits, and, as is usual in chemometrics, it 
is important to work out in advance what is required from the experiment. Three 
common criteria are as follows: (1) means-this is the confidence limit for the 
mean readings at each point-i.e. the averaged reading, after replicates have been 
averaged; (2) individual-this is the confidence limit for the predicted response 
without averaging replicates-it will always be wider than the mean confidence 
interval as it takes into account analytical error; (3) Working-Hotelling-this is 
the confidence limits for the “surface” as a whole, and is related to the design of 
the experiment. 

These confidence limits for the response surface of T1 and Cd are illustrated in 
Figure 6a. It is often clearer to consider only one pair of confidence intervals: 
Figure 6b illustrates the 95% confidence intervals for the mean alone. A key 
message of chemometrics is that it is important to choose which criterion is 
required. 

It is, of course, also possible to compute the univariate confidence limits as are 
illustrated in Figure 6c for the case of T1. Note that the scale is still coded (i.e. 
logarithmically related to concentration). Obviously the advantage of using 
modern graphical methods (such as in SAS-Statistical Analysis System) is that it 
is easy to display relevant information in a large variety of ways: we have only 
selected a few of the possibilities in this paper, for the sake of brevity. 

4.3 How Useful is the Design? 

Most conventional statistical texts provide detailed mathematical tests as to how 
well a given design recovers parameters. For example, if most experimentation is 
in the centre of the design, then there is higher confidence in the recovered 
parameters in the centre of the design. If there is heavy experimentation on the 
outside of the experimental region, then the uncertainty in the recovered para- 
meters is more even throughout the experimental region. 

This can be visualised by plotting the leoerage over and outside the experimental 
region;24 this is illustrated for the central composite design in Figures 7a and 7b 
for a two factor response surface: note that the region chosen is asymmetrical and 
broader than the experimental region. Leverage is dependent entirely on the 
design, but the confidence intervals are related to leverage. The higher the leverage, 
the lower the confidence in the fitted results; the shape of the confidence bands is 
entirely dependent on leverage but the absolute size of the confidence bands 
depends on the mean square error from the observed experiment. Clearly the 
leverage for the experiment in question is least in the middle, is fairly smooth and 
is symmetrical. The effect of changing the number of replicates, position of outliers 
and the symmetry of the design can best be seen via visualising the leverage, and is 
a valuable aid to the experimenter prior to obtaining data. The leverage for two 
factors in an asymmetric experiment (Table 2b) is illustrated in Figure 8. It is clear 
that the leverage, in turn, is also asymmetrical. In addition to examining the 
influence of symmetry, we might want to look at the influence of outlying 
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Z 

2 . 5 0  1 
0. 33 

-1 .83  

-4.00 

Figure 6a Confidence bands for TI and Cd response surface (Figure 5). From left hand top to bottom 
95% upper limit for ( 1 )  Individual responses (2) Working-Hotelling (3) Means responses; lower 95% 
limit for (4) Mean responses (5) Working-Hotelling (6) Individual responses. 

Z 

2.00 

0. 33 

-1.33 

-3.00 
1. 

1. 68 

-1. 68 

Figure 6b Upper and lower 95% confidence intervals for the mean response alone, corresponding to 
Figure 6a. 
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1 

L O  
0 
G 

Y - 1  
I 
E 
L 

-2 

-3 

-2 -1  0 1 2 

CODED T1  C O N C E N T R A T I O N  

Figure tic Univariate confidence bands for TI (Experiment A) (logarithmically coded concentrations 
and response as discussed in text). From left hand top to left hand bottom; 95% upper limit for ( 1 )  
Working-Hotelling (2) Individual responses (3) Mean responses; (4) the predicted univariate response; 
95% lower limit for (5)  Mean responses (6) Individual responses (7) Working-Hotelling. 

experiments. In the central composite design described above, outliers were set at  
& 1.68; another design called a face centred cube sets these outliers at & 1.00 
instead (so that conditions 9 to 14 in Table 2 differ). The leverage for this design is 
illustrated in Figure 9. Clearly the leverage differs considerably. It is also, of 
course, possible to examine the effect to changing the number and distribution of 
replicates. This is discussed in more detail elsewhere.24* 2 5 s  

5. CONCLUSION 

In this paper we have shown the advantages of using experimental design and so 
employing a chemometric approach to obtaining environmental analytical data. 

It is likely that experimental design will be employed far more widely in 
chemometrics. Of especial interest is the development of truly multivariate response 
surface methodology: in the example cited above the response is a univariate one 
(a plant dry weight). In many real situations, the response might be multivariate, 
e.g. the concentration of several compounds. The response can then be modelled 
by a multivariate parameter such as a principal component or PLS component 
and so multivariate method for dimensionality reduction can be combined with 
methods for experimental design.26 Analogously methods for time series analysis 
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8 

4 

0 2. 00 
2. 3 

-3. 0 
Figure 7a Three-dimensional representation of leverage for central composite design (Table 2a) as 
discussed in this paper. 
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FACTOR X 3  

Figure 7b Contour representation of leverage in Figure 7a. 
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1 2  - 

e -  

0 2. 00 
2. 3 

-3. 0 

Figure 8a Three dimensional representation of leverage for the asymmetric design in Table 2b (x, 
versus x3). 

-2 -1 0 1 2 

FACTOR X 3  

Figure 8b Contour representation of leverage in Figure 8a. 
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h 

2. 00 
3 

-3. 0 

Figure !h Threedimensional representation of leverage for face centred cube design as discussed in 
text. 
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Figure 9b Contour representation of leverage in Figure 9a. 
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have been combined with multivariate methods for the study of geochemical 
cycli~ity.~' .~ '  

There remain many exciting developments in the area of experimental design. 
Within the field of chemometrics this is particularly important since, with the 
advent of modern analytical instrumentation and rapid facile on-line computing 
power, large quantities of data can be generated, so methods for meaningful design 
of sampling strategies are vital. Special statistical approaches need to be developed 
to cope with multivariate responses and relatively high analytical reproducibility. 

The environmental analytical chemist must be aware of methods for experimental 
design: it is important to realise that meaningless results can be obtained if 
experiments are designed with an inappropriate number of degrees of freedom, for 
example. Often considerable time and effort can be spent on acquiring and 
interpreting experimental data: this time can be wasted if insufficient thought is 
given to the nature of the design; considerations such as the model, the 
distribution of points, replicates analysis, coding, size of relative errors all need to 
be taken into account. 

In conclusion, chemometrics is likely to become an indispensible tool of the 
environmental analytical chemist. 
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